Hoerni, J. A. \& Ibers, J. A. (1954). Acta Cryst. 7, 744.
Kihlborg, L. (1963). Acta Chem. Scand. 17, 1485.
Kovba, L. M. \& Trunov, V. K. (1962). Dokl. Akad. Nauk SSSR, 147, 622.
Magnéli, A. (1949). Ark. Kemi, 1, 213.
Roth, R. S. \& Wadsley, A. D. (1965). Acta Cryst. 19, 26.
Roth, R. S. \& Waring, J. L. (1966). J. Res. Nat. Bur. Stands. 70A, 281.

Sime, J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Eds. Pepinsky, Robertson and Speakman, London: Pergamon Press.
Sleight, A. (1966). Acta Chem. Scand. 20, 1102.
Sleight, A. \& Magnéli, A. (1964). Acta Chem. Scand. 18, 2007.

Stephenson, N. C. (1965). Acta Cryst. 18, 496.
Stephenson, N. C. (1966). Acta Cryst. 20, 59.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

The Structure of Cobalt Mercury Thiocyanate, $\mathbf{C o}(\mathbf{N C S})_{4} \mathbf{H g}$

By J. W. Jeffery and K. M. Rose
Department of Crystallography, Birkbeck College, London University, Malet Street, London, W.C.1, England

(Received 15 June 1967)

Abstract

Accurate intensity measurements using photometry of integrating Weissenberg photographs from a spherical crystal have enabled the structure of $\mathrm{Co}(\mathrm{NCS})_{4} \mathrm{Hg}$ to be solved in considerable detail. $a=$ $11 \cdot 109, c=4 \cdot 379$. Space group $I \overline{4} . Z=2$. The structure was solved from three-dimensional Patterson and Fourier syntheses and refined by least squares; $R=4 \cdot 2 \%$. The effects of secondary extinction and anomalous dispersion were investigated and C and N clearly distinguished in the presence of a considerable proportion of heavy atoms. The combination of two tetrahedrally coordinated atoms, Hg and Co , has produced a most unusual arrangement in which the Hg and Co atoms are held apart by four spirals, each containing 4 SCN bridges, which are interlinked so that any one SCN bridge takes part in eight spirals. Anomalous dispersion effects enable a distinction to be made between the a and b axes.

Introduction

The determination of the crystal structure of this compound (which is of importance in connexion with the

Fig.1. Stereogram drawn from the optical goniometric measurements of a small double-ended crystal.
investigation of paramagnetic anisotropy and polar-ized-light absorption spectra (Figgis \& Nyholm, 1958; Ferguson, 1960; Cotton, Goodgame \& Sacco, 1961; Figgis, Gerloch \& Mason, 1964) and the spatial distribution of the mercury valency bonds in mercuric tetrathiocyanates) was first attempted (Jeffery, 1947) by two-dimensional Patterson and Fourier syntheses and by the use of a few critical general reflexions. The accuracy of the intensity measurements was insufficient to solve the structure completely and this provided the incentive for prolonged investigations of the factors involved in accuracy in intensity measurement (Jeffery, 1963; Rose \& Jeffery, 1964; Jeffery \& Rose, 1964; Jeffery \& Whitaker, 1965). Cobalt mercury thiocyanate was used for part of these investigations and it was decided to complete the collection of accurate threedimensional data and to find how much information it was possible to obtain about a structure in which the ratio of heavy to light atoms is greater than the ratio of carbon to hydrogen atoms in organic compounds, and where, in addition, there are large absorption effects. One of the objectives was to establish the exact sequence in the SCN bridge.

The primary crystallographic data have been given in the form suggested by Kennard, Speakman \& Donnay (1967) unless stated otherwise.

Experimental

The crystals were produced by precipitation crystallization. One double-ended crystal was found, $0.12 \times$ $0.17 \times 0.58 \mathrm{~mm}$ in dimensions, from which the optical goniometer measurements of Fig. 1 were made. $(001) \wedge(101)=21 \cdot 5^{\circ}$, giving $c / a=0 \cdot 394$. The general form $\{21 \overline{1}\}$ clearly demonstrates that the point group is $\overline{4}$ and this was supported by a positive result in the Giebe-Scheibe test for piezoelectric effect. Subsequent recrystallization by the Soxhlet technique produced a crop of double-ended crystals showing similar forms to those of Fig. 1.

Axial lengths were obtained by a modified Farquhar \& Lipson (1946) technique. Twelve 5° oscillations were superimposed on the same film $[0,14,0$ and $0, \overline{14,} 0$ $\left(\theta=76^{\circ}\right)$ and $0,10,4 ; 0,10, \overline{4} ; 0, \overline{10}, \overline{4}$ and $0, \overline{10}, 4(\theta=$ $81 \cdot 5^{\circ}$) on both sides of the film] with just sufficient missetting of the crystal to prevent overlapping. The film holder was checked for concentricity and the effective radius deduced from measurements of cassette diameter and film and paper thickness. The film was held against the film holder by sprung rings above and below the zero layer line. Errors were calculated from the maximum possible errors in measurement of spot position and film radius, and of the effect of film shrinkage.

The density was measured by the flotation method.

Intensities were measured by photometry of integrating Weissenberg photographs about a and c. The methods used were those described in the references given in the Introduction.

The crystals were ground nearly spherical by Bond's (1951) method and the corrections applied and individual weights calculated as described by Jeffery \& Rose (1964). Scale factors for the various layers were obtained from a correlation program, which included symmetry-related as well as common reflexions, and was based on the method suggested by Rollett \& Sparks (1960). This method has since been criticized and modified, but judging irom the R value finally obtained it cannot have given rise to appreciable errors in this case. A check run with the original data using the modified method (Hamilton, Rollett \& Sparks, 1965), but without utilizing the symmetry-related reflexions, gave values in good agreement with the earlier ones. Some 1300 measurements were reduced by correlation and averaging to 360 independent F^{2} values. All the independent reflexions were measured up to $2 \sin \theta=1.95$ for $\mathrm{Cu} K \alpha$ radiation. Another program calculated a Wilson plot (which gave initial values for the absolute scale and temperature factors) and $N(z)$ coordinates (which gave a curve lying well below the standard acentric curve). All programs, except where otherwise specified, were written in CHLF autocode by one of the authors (J.W.J.) with the occasional incorporation of library routines from London University Institute of Computer Science.

Crystal data
$a=11 \cdot 109 \pm 2 ; c=4 \cdot 379 \pm 2 \AA ; c / a=0 \cdot 3942 \pm 3$ at
$18 \pm 3^{\circ} \mathrm{C}$.
$V=540 \cdot 5 \pm 4 \AA^{3} ; D_{m}=3 \cdot 020 \pm 5 \mathrm{g.cm}^{-3} ; Z=2 ;$
$D_{x}=3.018 \pm 3 \mathrm{~g} . \mathrm{cm}^{-3}$,
$\mathrm{Cu} K \alpha$ radiation, $\lambda \alpha_{1}=1 \cdot 54050 ; \lambda \alpha_{2}=1 \cdot 54434 \AA$.
Absorption coefficient, $\mu=460 \mathrm{~cm}^{-1}$.
Laue symmetry: $4 / \mathrm{m}$. Point group: $\overline{4}$. Reflexions absent only for $h+k+l=2 n+1$. Space group: $I \overline{4}$. C, N and S are probably in general positions. Hg and Co must be on special positions $\left(000 ; \frac{111}{222}\right)+(a) 000$; (b) $00 \frac{1}{2}$; (c) $\frac{1}{2} 0 \frac{1}{4}$; (d) $\frac{1}{2} 0 \frac{3}{4}$. If the origin is taken at a Hg atom, the Co atom can be at (b), (c) or (d). The 'molecule' must have $\overline{4}$ symmetry at both the Hg and Co positions.
The crystals were deep purple, square prisms, with large (110) and very small (100) faces, terminated by two pairs of sphenoid faces. Thin sections perpendicular to the prism axis gave uniaxial negative interference figures between crossed polarizers. Sections parallel to \mathbf{c} were dichroic; purple $\| \mathbf{c}$, blue $\perp \mathbf{c}$.

Structural data

Patterson synthesis

If the positive z coordinate is chosen for the S , the S-Co peak in the three-dimensional synthesis fixes Co at $\frac{1}{2}, 0, \frac{3}{4}$. Taking the negative coordinate shifts Co to $\frac{1}{2}, 0, \frac{1}{4}$, but this is merely equivalent to turning the cell through a right angle. Coordinates for C and N (assuming S-C-N) were also obtained from the Patterson synthesis.*

Least-squares refinement

Seven cycles using Rollett's S.F.L.S. programı (World List of Crystallographic Computer Programs, no. 4036) with atomic scattering factors from International Tables for X-ray Crystallography (1962) (Hg and Co amplitudes corrected for both anomalous scattering components) and anisotropic temperature factors, brought the shifts to less than one tenth of the standard deviations. $R=4 \cdot 2 \%$. Table 1 gives the fractional coordinates and average temperature factors of the crystal chemical unit.

Table 1. Fractional coordinates (σ in brackets) $\left(\times 10^{4}\right)$ and average temperature factors

	X / a	Y / b	Z/c	B
Hg	0	0	0	2.38
S	1528 (3)	1260 (3)	2980 (10)	$2 \cdot 70$
C	2733 (11)	804 (12)	1179 (34)	2.45 (or 2.4*)
N	3601 (9)	480 (11)	-228 (62)	3.40 (or 2.4*)
Co	5000	0	-2500	$2 \cdot 63$)

[^0]Table 2. Observed and calculated structure factors

Fourier syntheses

An observed Fourier synthesis (O.F.) was computed from the final structure factors (S.F.) (Table 2) and the atomic peak positions calculated from Sparks's 19 point program (W.L. 4048). Without cut-off correction, these were within $2 \cdot 5 \sigma$ of the least-squares positions. A composite diagram through the atomic positions is shown in Fig.2. (The complete atomic arrangement is given in Fig. 10). A difference Fourier synthesis (D.F.) was featureless apart from diffraction effects round Hg and Co.

Interatomic distances and angles

The interatomic distances and angles were calculated by a modified version of the program (W.L. 4045) of Sparks. The values obtained are given without correction (W) in Table 3, together with the bond lengths corrected for thermal vibrations (Busing \& Levy, 1964) for 'riding' (R) and 'independent' (I) motions. The limits of the corrected bond lengths are given as 'MIN' and 'MAX' in the table and correspond to 'in-phase' and 'anti-phase' vibration of the atom pair respectively. The latter is physically so unlikely that it can be disregarded except as defining the maximum possible correction.

In both cases the tetrahedral arrangement about Hg and Co is slightly flattened in the c direction, so that the larger angle refers to two S 's or N 's which have the same z coordinate.

Vibration ellipsoid axes

The vibration ellipsoid axes (r.m.s. displacement), obtained from a modified version of Sparks's program (W.L. 4044), are given in Table 4.

Secondary extinction

Inspection of the S.F. table suggested that secondary extinction might be present. For secondary extinction the effective absorption coefficient $\mu^{\prime}=\mu+g^{\prime} \varrho$ and

$$
g^{\prime}=g\left(1+\cos ^{4} 2 \theta\right)\left(1+\cos ^{2} 2 \theta\right)^{-2}
$$

(Zachariasen, 1963) where g is a constant and ϱ is the integrated reflexion. This change is equivalent to a

Table 4. Vibration ellipsoid parameters
(3σ in brackets)

	r.m.s. displacement	a	Direction	nes
Hg	0.211(1)	0	0	1
	$0 \cdot 152(1)$	0	1	0
	$0 \cdot 152(1)$	1	0	0
S	0.221(7)	0.085	-0.559	0.825
	$0 \cdot 168(5)$	-0.257	0.787	0.561
	$0 \cdot 159(5)$	0.963	0.260	0.077
C	$0 \cdot 193(20)$	0.068	-0.925	0.374
	$0 \cdot 190$ (20)	-0.162	$0 \cdot 360$	$0 \cdot 919$
	$0 \cdot 138(12)$	0.984	$0 \cdot 124$	0.125
N	$0 \cdot 240$ (25)	-0.220	0.504	0.836
	0.204(5)	$0 \cdot 185$	$0 \cdot 862$	-0.471
	$0 \cdot 173$ (4)	0.958	-0.051	0.283
Co	$0 \cdot 228(5)$	0	0	1
	$0 \cdot 156(3)$	0	1	0
	0.156(3)	1	0	0

change in the absorption correction factor, A^{*} and for small changes:

$$
\begin{aligned}
\frac{\delta \varrho}{\varrho}=\frac{\delta A^{*}}{A^{*}} & =\frac{1}{A^{*}} \cdot \frac{d A^{*}}{d(\mu r)} \cdot \delta(\mu r) \\
& =\frac{r g^{\prime} \varrho}{A^{*}} \cdot \frac{d A^{*}}{d(\mu r)} \\
\varrho_{c} & =q F_{c}^{2}\left(1+\cos ^{2} 2 \theta\right) \frac{L}{A^{*}}
\end{aligned}
$$

where L is the Lorentz factor and q a constant.

$$
\cdot \frac{\delta \varrho}{\varrho}=\frac{F_{c}^{2}-F_{o}^{2}}{F_{c}^{2}}=r g^{\prime} q F_{c}^{2}\left(1+\cos ^{2} 2 \theta\right) \frac{L}{A^{* 2}} \cdot \frac{d A^{*}}{d(\mu r)} .
$$

Making the approximations

$$
F_{c}^{2}-F_{o}^{2}=\left(F_{c}-F_{o}\right)\left(F_{c}+F_{o}\right) \simeq 2 F_{c}\left(F_{c}-F_{o}\right)
$$

and

$$
\frac{d A^{*}}{d(\mu r)} \simeq k A^{*},
$$

where k is a constant we have:

Table 3. Distances and angles (σ in brackets)

Distances	W	R	I	MIN	MAX
$\mathrm{Hg}-\mathrm{S}$	2.558 (4) \AA	2.559 A	$2 \cdot 586$ A	2.558 A	$2 \cdot 614$ A
S-C	$1 \cdot 635$ (14)	1.638	1.678	1.635	1.720
$\mathrm{C}-\mathrm{N}$	$1 \cdot 199$ (21)	1.207	1.261	1.200	1.322
$\mathrm{N}-\mathrm{Co}$	$1 \cdot 921$ (16)	1.926	1.959	1.921	1.997
		Angles			
		S-Hg-S(1)	118.7 (1) ${ }^{\circ}$		
		S-Hg-S(2)	$105 \cdot 1$ (1)		
		$\mathrm{Hg}-\mathrm{S}-\mathrm{C}$	97.3 (5)		
		$\mathrm{S}-\mathrm{C}-\mathrm{N}$	178 (2)		
		$\mathrm{C}-\mathrm{N}-\mathrm{Co}$	179 (1)		
		$\mathrm{N}-\mathrm{Co}-\mathrm{N}(1)$	118 (1)		
		$\mathrm{N}-\mathrm{Co}-\mathrm{N}(2)$	106 (1)		

Fig.2. A composite diagram of the nearest sections to the atomic centres of the atoms. Cross hatched areas are negative. Thin contours are at intervals of $2 \mathrm{e} . \AA^{-3}$, thick at 10 e. \AA^{-3} except around the mercury atom, where the two very thick contours are at 100 and $200 \mathrm{e} . \AA^{-3}$. Zero contour not shown. Crosses mark the L.S. centres; length of arm $=3 \sigma$.

Fig. 3. The effect of secondary extinction. The ordinates are values of $Z=\left(F_{c}-F_{o}\right)\left(1+\cos ^{2} 2 \theta\right) A^{*} \times 10^{-4} /\left(1+\cos ^{4} 2 \theta\right)$ $\sin 2 \theta$ plotted against $F_{c}^{3} \times 10^{-5}$. The slope of the line is a measure of the amount of secondary extinction present, although if a small amount of primary extinction is present as well it would have a similar effect.

$$
\begin{gathered}
F_{c}-F_{o}=2 k r g q F_{c}^{3} \cdots A^{*}\left(1+\cos ^{4} 2 \theta\right) \\
=K F_{c}^{3}\left(1+\cos ^{2} 2 \theta\right) \\
\left(1+\cos ^{2} 2 \theta\right) \quad L
\end{gathered} A^{*} . L
$$

Thus if the left-hand side is plotted against F_{c}^{3} it should give a straight line of slope K. Fig. 3 gives the plot for $27 h k 0$ reflexions and clearly shows that secondary extinction is present. For these 27 reflexions, correction for secondary extinction from the graph reduced R from $5 \cdot 4 \%$ to $3 \cdot 2 \%$.

Atomic arrangement

Up to this point it had been tacitly assumed (and apparently justified by the results) that the arrangement was $\mathrm{S}-\mathrm{C}-\mathrm{N}$, in accordance with the chemical evidence, and not $\mathrm{S}-\mathrm{N}-\mathrm{C}$. In an attempt to confirm this, C and N were interchanged and a further series of L.S. refinements undertaken.

Fig. 4 shows the relevant D.F. sections. As would be expected, a positive peak appears in the original nitrogen position (on the right) and a negative one on the left in (2) but a comparison of (1) and (6) shows that the evidence of the D.F.'s gives very little indication of the relative positions of C and N . However, the O.F. gives a different result. Fig. 5 shows the O.F.'s corresponding to Fig.4(1) on top and Fig.4(6) below. There is remarkably little difference between them and there would appear to be no doubt which is C and which N . This must mean that the position of the atomic centres (which changed very little during the L.S. refinements after interchanging C and N) is the main factor determining the phases and an inspection shows that only 4 out of 283 phases able to vary $(l \neq 0)$ had altered by more than 2° during the course of this second refinement. The greatest alteration was 3.25° and most changes were less than 1°.

The only parameters which changed significantly during the L.S. refinement were the anisotropic temperature factors and it is clear that this was responsible for the almost complete disappearance of the D.F. peaks of Fig. 4(2) at the end of the refinement [Fig.4(6)].

Since this left the evidence very much as it was before, a further attempt at confirming the identification of C and N was made using the radial electron density distribution.

Radial distribution of electron density

The average radius of each contour on the three O.F. sections of Figs. $5(a)$ and 6 was obtained from 36 measurements for each electron density. The standard deviation of electron density at a general position, $x y z$, was obtained from the formula

$$
\sigma(\varrho)=\frac{1}{V}\left[\sum_{h k l}(\Delta F)^{2}\right]^{\frac{1}{2}}
$$

(Cruickshank \& Rollett, 1953). For a single point $\sigma(\varrho)=0 \cdot 2 \mathrm{e} . \AA^{-3}$. For the average of 36 measurements $3 \sigma=0 \cdot 1 \mathrm{e} . \AA^{-3}$. Allowing for errors arising from bonding and anisotropic vibration distortion it would seem reasonable to take the maximum error as $0.2 \mathrm{e} . \AA^{-3}$.

A series of radial distribution curves was calculated from the atomic form factors for various values of the temperature factor, B, and the upper limit of $\sin \theta / \lambda$. The upper limit of $\sin \theta / \lambda$ for the experimental data was 0.63 and for this limit there is little variation of the radial distribution curve with B from $r=0.4$ to $0.7 \AA$. The observed points can best be fitted to the curves in this region if the zero of electron density on the Fourier is assumed to be $0.4 \mathrm{e} . \AA^{-3}$ too high. Such an error could easily arise from faulty f curves, even although the scale factor error was less than 1%. If this correction is made the observed points are shown on Fig. 7 together with the errors as given above. The curves give the calculated values for $B=2 \cdot 4$, which appears to give the best fit at the peaks, but $B=2.3$ or 2.5 would do this nearly as well. The curve from $r=0.4$ to $0.7 \AA$ would not be appreciably affected by the choice.

For carbon the B value is in good agreement with the average value of Table 4, but the value for nitrogen in the table is too high. This may be connected with the much larger error in the z coordinate for nitrogen, and the evidence of the Fourier synthesis that the B values are nearly the same is probably to be preferred in this case.

Electron transfer and bond electrons

The general agreement between observed and calculated electron density distribution would seem to establish the identity of the Fourier peaks beyond reasonable doubt (it would be necessary to assume a value of $B \simeq 1.5$ for carbon and 3.5 for nitrogen to get anywhere near a fit the other way round), but the observed points for nitrogen appear to lie significantly below the calculated curve and those for carbon above. If this is a real effect it indicates an appreciable electron transfer from nitrogen to carbon. Such a transfer would be consistent with the very short $\mathrm{C}-\mathrm{N}$ bond $[1.20 \pm 0.06(3 \sigma)]$ which gives rise by overlap to the appreciable electron concentration in the bond shown in the sections perpendicular to \mathbf{b} [Fig. $6(b)$] which are only 18° from the vertical plane containing the bond.

Anomalous dispersion

Theoretical

When the original data were collected the possibility of anomalous dispersion effects was not appreciated. This did not affect most of the work on comparison of symmetry-related reflexions since this was done on the $h k 0$ zone in which symmetry-related reflexions are
all affected in the same way. However, this does not apply to the non-zero layer reflexions and the adjustment of the amplitudes of the Hg and Co atomic scat-

Fig.4. Difference Fourier ($F_{o}-F_{c}$) sections perpendicular to \mathbf{c} through the centres (+) of the C and N atoms. Diameter of circles $=1.5 \AA$. Zero contour dashed; 0.5 e. \AA^{-3}, light line; $1 \cdot 0$ e. \AA^{-3}, heavy line. Negative areas hatched. Figures give approximate position and magnitude of maximum electron density. (1) After completion of refinement with atom order S-C-N.(2) After interchanging Cand N to giveS-N-C. (3), (4), (5) and (6) After 1,2,3 and 4 rounds of L.S. refinements maintaining the order $\mathrm{S}-\mathrm{N}-\mathrm{C}$. Second refinement then complete.
tering factors does nothing to take account of the difference in intensity of symmetry-related reflexions due to the anomalous dispersion.
The expected value of R from the known errors in the data was $1 \cdot 6 \%$ (Rose, 1965). The value found was $4 \cdot 2 \%$ and this could at best be reduced to $3 \cdot 2 \%$ by correcting for extinction. Some of the remaining differences could be due to the assumption that

$$
I_{h k l}=I_{h k \bar{l}}=I_{\bar{h} \bar{k} l}=I_{\bar{k} \bar{k} \bar{l}}=I_{\bar{k} h l}=I_{\bar{k} h \bar{l}}=I_{k \bar{h} l}=I_{k \bar{h} l} .
$$

Since

$$
\begin{aligned}
\alpha_{h k l}=-\alpha_{h k \bar{l}}=\alpha_{\bar{h} \bar{k} l}=-\alpha_{\bar{h} \bar{k} l} & = \\
& -\alpha_{\bar{k} h l}=\alpha_{\bar{k} \bar{h} \bar{l}}=-\alpha_{k \bar{h} l}=\alpha_{k \bar{h} l}
\end{aligned}
$$

($\alpha \neq 0$ or π in general) anomalous dispersion could destroy the equality of intensities. The extent of the effect was therefore calculated, using the S.F. tables and scattering factor values as follows.

In Fig. 80 A is the normal atomic scattering factor with zero phase relative to the atomic centre as origin. $A B$ is Δf^{\prime} and $B C \Delta f^{\prime \prime}$, the two components due to the anomalous dispersion effect. $\overrightarrow{O C}$ is therefore the

Fig.5. (a) Observed electron-density sections perpendicular to cthrough the centres $(+)$ of the C and N atoms; corresponds to Fig.4(1). Diameter of circles $1 \cdot 5 \AA$. Zero contour: long dashes; full lines at 2 e. \AA^{-3} intervals; central, short-dashed contours at 9 and 11 e. \AA^{-3} for C and N respectively. Maximum electron density marked. The large crosses mark the centres as obtained from L.S. refinement. The lengths of the arms are equal to 3σ. The small crosses mark the centres obtained by peak location from the 3-D Fourier synthesis. (b) As for (a) after second refinement with C and N interchanged; corresponds to Fig.4(6).
true scattering factor, with a non-zero phase angle, δ. $O D=O C$ is the atomic scattering factor $\left(f^{\prime}\right)$ used in the S.F. calculations, with zero phase angle. To take account of the phase angle, δ, it is therefore necessary
to add the vector $\overrightarrow{D C}$ (modified by the temperature factor) to the Argand diagram of the calculated S.F.,
so that $\overrightarrow{D C}$ makes an angle of $\pi / 2-\delta / 2$ with the scattering factor used in the calculations. The two components of this vector are $B C=\Delta f^{\prime \prime}$ and $D B=\Delta f^{\prime \prime \prime}=$ $\Delta f^{\prime \prime} \tan \delta / 2 . \operatorname{Sin} \delta=B C / O C=\Delta f^{\prime \prime} \mid f^{\prime}$.

Only Hg and Co in the structure have significant anomalous scattering for $\mathrm{Cu} K \alpha$ radiation. The normal phase of the Hg scattering is always zero and the Co scattering can have phase angles of $0, \pi / 2, \pi$ or $3 \pi / 2$, depending on the indices. To get the maximum effect Co and Hg should have the same phase, so that the anomalous effects are added, the X component of the S.F. (A) should be as small as possible [large θ and negative (SCN$)_{4}$ contribution] and the Y component $\left[B\right.$, contributed by $\left.(\mathrm{SCN})_{4}\right]$ should be as large as possible (up to the value for a maximum

$$
\left[\left(\Delta f_{\mathrm{Hg}}^{\prime \prime}+\Delta f_{\mathrm{Co}}^{\prime \prime}\right)^{2}+A^{2}\right]^{\frac{1}{2}}
$$

which is not approached for any reflexion of this crystal) so that the resultant amplitudes are as different as possible for two symmetry-related reflexions. Inspection showed that the 224 reflexions, with $A=31, B=$ -15 and $\sin \theta=0.731$ satisfied these requirements and Fig. 9 shows the Argand diagram for 224 and 224 and Table 5 the scattering factor values.

Table 5. Scattering factors for Hg and Co

	f^{\prime}	$\Delta f^{\prime \prime}$	$\Delta f^{\prime \prime \prime}$	$\exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)$
Hg	43.8	8	0.75	0.586
Co	11.3	3.8	0.65	0.555

The true amplitudes of 224 and $2 \overline{2} 4, O R$ and $O S$, are very different and the ratio $I_{2 \overline{2} 4} / I_{224}$ is $1 \cdot 40$, although the average intensity, 1.19×10^{3}, is not significantly different from the original calculated intensity $\left(O N^{2}=O M^{2}\right)$ of $1 \cdot 18 \times 10^{3}$, and the error in intensity involved in measuring only one reflexion is of the order of 17%. Thus, where symmetry-related reflexions were averaged, no appreciable error is likely to have been caused, but where only one reflexion was measured the error may be considerable. In only a few cases is it likely to be more than 10%, but in spite of the large number of averaged results, it is probable that part of the residual is, in fact, due to errors arising from anomalous dispersion.

Experimental

A spherical crystal, very similar to that from which the a-axis data had been collected, was used for an experimental test of the effect of anomalous dispersion. The a axis was taken as positive upwards along the
rotation axis of the camera and the original choice then determined the directions of positive \mathbf{b} and \mathbf{c}. However, since the Laue symmetry is $4 / m$, rotation of 90° about \mathbf{c} would not normally be detectable, so that the direction along the rotation axis might equally well be $\pm \mathbf{b}$ or $-\mathbf{a}$. Since there is a twofold axis in the space group passing through the origin, it is not possible to distinguish between the positive or negative directions of the axes, but anomalous dispersion effects should make it possible to determine whether a or \mathbf{b} was along the camera rotation axis. Four pairs of $\{224\}$ reflexions were therefore registered with an integrating Weissenberg camera. The photometer results are given in Table 6.

Table 6. Photometer results

$h k l$	Density	Ratio	Average
224	0.373	1.44	0.316
224	0.259		
$2 \overline{24}$	0.362	1.25	0.333
224	0.304		
$\overline{224}$	0.334	1.27	0.299
$\overline{224}$	0.264		
$\overline{224}$	0.367	1.30	0.325
$\overline{224}$	0.283		
Overall average	1.32 ± 8	0.318 ± 13	

On the basis of the original choice of the z coordinate of S from the Patterson synthesis, \mathbf{b} is along the rotation axis, not a. The average ratio of the pairs, $1 \cdot 32$, is rather less than the expected value of $1 \cdot 40$, but the standard deviation shows that this is probably not significant.

Discussion

The general arrangement of the structure, and, in particular, the tetrahedral coordination of Hg by S which was suggested earlier (Jeffery, 1947) and which was also found by Scouloudi (1953) in $\mathrm{Hg}(\mathrm{SCN})_{4} . \mathrm{Cu}(\mathrm{en})_{2}$, has been confirmed. The tetrahedral coordination of Co by N has been established. The distortions of the tetrahedra are similar to those found in other structures with tetrahedrally coordinated cobalt (Figgis, Gerloch \& Mason, 1964). The S, C, N and Co atoms lie in a line, straight to within the limits of error $\left(2^{\circ}\right)$. This is in contradistinction to the findings of Scouloudi (1953) that the SCN bridge is kinked at \mathbf{C} by about 20°. The difference is probably due to the much lower symmetry of the $\mathrm{Hg}(\mathrm{SCN})_{4} . \mathrm{Cu}(\mathrm{en})_{2}$ structure.

Since the strains in the structure would tend to open up the $\mathrm{Hg}-\mathrm{S}-\mathrm{C}$ angle, its measured value of 97° is probably greater than its value unstrained.

The combination of two tetrahedrally coordinated atoms in the structure has produced a very unusual arrangement. The Hg atoms are separated vertically by the height of the unit cell $(4 \cdot 38 \AA)$ which is considerably greater even than the van der Waals bonding distance. The connexion between them, through a

Fig. 6. Observed electron-density sections through the centres of the C and N atoms: (a) perpendicular to \mathbf{a}; (b) perpendicular to b. Contours, etc. as for Fig. 5(a).

Fig. 7. Calculated electron density radial distribution curves for C and N atoms. $B=2 \cdot 4$, cut-off for $\sin \theta / \lambda$ at $0 \cdot 63$, corresponding to the experimental conditions ($\mathrm{Cu} K \alpha, 2 \sin \theta=1.95$). The observed points and estimated errors (on the basis of 3σ) are shown. The curves have been separated laterally to avoid overlap.
'square spiral' of four $\mathrm{S}-\mathrm{C}-\mathrm{N}$ arms (Fig.10) is very indirect. If we start at $\mathrm{Hg}(x=0, y=0, z=1)$, this is linked to $\operatorname{Co}\left(\frac{1}{2} 0 \frac{3}{4}\right)$ in the a direction [via $\mathrm{S}(z=1 \cdot 30)$, $\mathrm{C}(1 \cdot 12), \mathrm{N}(0 \cdot 98)]$; thence to $\mathrm{Hg}\left(\frac{111}{22}\right)$ in the \mathbf{b} direction; to $\mathrm{Co}\left(0 \frac{11}{4}\right)$ in the - a direction; and to $\mathrm{Hg}(000)$ in the -b direction. A similar spiral links the two, going from $\operatorname{Co}\left(\frac{1}{2} 0 \frac{3}{4}\right)$ in the $-b$ direction and two more

Fig. 8. Diagram showing the relation between the true atomic scattering vector $O C$, the normal (real) scattering factor $O A$ and the modified (real) factor $O D$.

Fig.9. The Argand diagram for 224 and $2 \overline{2} 4$ reflexions. $O M$ and $O N$ are the original calculated structure factors for the two cases. $M P=N Q=\Sigma \Delta f^{\prime \prime} e^{-M}$ and $P R=Q S=\Sigma \Delta f^{\prime \prime \prime} e^{-M}$.

Fig. 10. Diagram of the structure. The figures are hundredths of the cell height.
arms start from $\mathrm{Hg}(001)$ in the -a direction. By starting from $\mathrm{Hg}(001)$ in the $\pm \mathbf{b}$ direction, four spirals go up to $\mathrm{Hg}(002)$. The Co atoms, vertically above one another (also $4.38 \AA$ apart), are linked in the same way, except that \mathbf{a} and \mathbf{b} are interchanged.

Each SCN arm takes part in eight such 'square spirals' (2 linking Hg at $z=0$ and $1 ; 2 \mathrm{Hg}$ at $\frac{1}{2}, 1 \frac{1}{2}$; 2 Co at $\frac{3}{4}, 1 \frac{3}{4}$ and 2 Co at $\frac{1}{4}, 1 \frac{1}{4}$). Each such spiral is a spring holding the Hg and Co atoms apart and straining the bonds in the process. It is almost certainly this strain which flattens the tetrahedral coordination round Hg and Co in the \mathbf{c} direction. If the arrangement could be reproduced mechanically it would probably provide the ideal spring mattress! On the atomic scale it provides the possibility for considerably greater thermal vibrations in the \mathbf{c} direction than in the $\mathbf{a b}$ plane. The SCN arms will also tend to vibrate like strings stretched between the Hg and Co atoms. There is some slight evidence that the C atom is at a partial node in this vibrating string, and for all the atoms on the string the longitudinal vibrations (nearly the a direction for the atoms in Table 4) are less than the transverse.

Conclusion

Accurate intensity measurements have enabled C and N to be distinguished in a structure containing a large proportion of Hg, Co and S atoms, and many structural details have been elucidated. The discrepancy between the measured R value of $4 \cdot 2 \%$ and the expected value of 1.6% has been shown to be partly due to extinction and probably partly to the effects of anomalous dispersion. For work of the highest accuracy it will be necessary to take account of the phase alteration introduced by anomalous dispersion (and not just the alteration in amplitude) even in centrosymmetric structures, when the effect is of the same order as in this case.

The crystals were prepared in the Chemistry Department at Birkbeck College and a sample kindly supplied by Professor Wardlaw. Parts of the paper appeared in extended form in theses by both authors (J.W.J., 1952; K.M.R., 1965) accepted for the degree of Ph.D. in London University. Professor Bernal's encouragement and advice are gratefully acknowledged.

References

Bond, W. L. (1951). Rev. Sci. Instrum. 22, 344.
Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142. Cotton, F. A., Goodgame, D. M. L. \& Sacco, A. (1961). J. Amer. Chem. Soc. 83, 4157.

Cruickshank, D. W. J. \& Rollett, J. S. (1953). Acta Cryst. 6, 705.
Farquhar, M. C. M. \& Lipson, H. (1946). Proc. Phys. Soc. 58, 200.
Ferguson, J. (1960). J. Chem. Phys. 32, 528.
Figgis, B. N. \& Nyholm, R. S. (1958). J. Chem. Soc. p. 4190 .

Figgis, B. N., Gerloch, M. \& Mason, R. (1964). Acta Cryst. 17, 506.
Hamilton, W. C., Rollett, J. S. \& Sparks, R. A. (1965). Acta Cryst. 18, 129.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Jeffery, J. W. (1947). Nature, Lond. 159, 610.
Jeffery, J. W. (1963). J. Sci. Instrum. 40, 494.
Jeffery, J. W. \& Rose, K. M. (1964). Acta Cryst. 17, 343.
Jeffery, J. W. \& Whitaker, A. (1965). Acta Cryst. 19, 963.

Kennard, O., Speakman, J. C. \& Donnay, J. D. H. (1967). Acta Cryst. 22, 445.
Mills, O. S. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis, Ed. Pepinsky, R., Robertson, J. M. \& Speakman, J. C., p.121. London: Pergamon Press.
Rollett, J. S. \& Sparks, R. A. (1960). Acta Cryst. 13, 273. Rose, K. M. (1965). Ph.D. Thesis, London Univ.
Rose, K. M. \& Jeffery, J. W. (1964). Acta Cryst. 17, 21. Scouloudr, H. (1953). Acta Cryst. 6, 651.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

Acta Cryst. (1968). B24, 662

On a Simple Approximate Matrix in the Least-Squares Determination of Positional Parameters

By C. Scheringer
Institut für Kristallographie der Technischen Hochschule Aachen, Germany

(Received 16 June 1967)

Abstract

The use of a simple approximate matrix in the least-squares determination of positional parameters with X-ray data is discussed. In the approximate matrix the summation over the structure-factor derivatives is no longer carried out, but rather, expected values of the matrix elements are used. The approximate matrix consists of a 3×3 block-diagonal matrix. Each block contains the metric tensor of the crystal, a factor being the square of the number of the electrons of the particular atom, and a universal scale factor. The approximation becomes more legitimate as more structure factors are used. It is shown theoretically that the quality of the approximation can be improved when fewer parameters are refined. Hence the approximation is improved when the number of parameters is reduced by introducing stereochemical restraints. The approximation is tested numerically by means of criteria which have been introduced by Sparks. It is concluded that the approximation is sufficient in the initial stages of a refinement for 1000,2000 , and 5000 data with about 27,47 , and 80 parameters respectively.

Introduction

In least-squares refinement of crystal structures one often does not use the full matrix in the normal equations, but rather approximations (diagonal matrix, block-diagonal matrix etc.) in order to save storage space and computing time. As is well known, the use of approximations is permissible because the leastsquares postulate only requires that the sequence of the right-hand sides of the normal equations shall converge towards zero (at the correct structure minimum). The form of the matrix is unimportant as long as it ensures that convergence occurs at the correct structure minimum.

Recently a further, very rough approximation for the normal matrix of positional parameters of the single atoms was described by Scheringer (1965a). This approximation, however, was intended to be used for readjusting positional parameters of the single atoms by means of a set of stereochemical restraints. In the present paper we shall investigate how far this approximation may also be used for the direct refinement of positional parameters. As the calculation of the approximate matrix is very rapid, one could save much computing time. The approximation will normally be too poor for the refinement of the parameters of the
single atoms, but it can be improved by introducing stereochemical restraints. In the following we shall establish this theoretically; further we shall give some criteria to judge the quality of a given approximation [similar to those given by Sparks (1961)], and we shall give some numerical values of the criteria with two structures. With the numerical results thus obtained we shall estimate the range (number of data, number of parameters) in which the approximation may be used.

The approximate matrix

For positional parameters of the single atoms the normal matrix A can be approximated by

$$
\begin{equation*}
\mathbf{Q}=k \mathbf{Z} \mathbf{H} \tag{1}
\end{equation*}
$$

(cf. Scheringer, 1965a). k is a scale factor which can be roughly determined by setting trace (A) equal to trace (\mathbf{Q}). (How the scale can be improved will be discussed below.) $\mathbf{Z H}$ is a 3×3 block-diagonal matrix with elements $Z_{i}^{2} h_{s t}$ for the i th block. Z_{i} is the number of electrons of the i th atom; $h_{s t}$ is a component of the metric tensor of the unit cell. \mathbf{Q} is positivedefinite and symmetric. The assumptions made in the approximation are:

[^0]: * Mills's (1961) program was used for all Fourier syntheses.

